TRIAL TEST 4: ORGANIC CHEMISTRY

Time allowed: 70 minutes

Section 1 - Multiple Choice

20 marks

Total marks:

80

Section 2 - Short & Extended Answer

60 marks

SECTION 1 - MULTIPLE CHOICE (20 MARKS)

Consider the compound whose structural formula is drawn below: 1.

$$CH_3CHCH = CHC$$

The IUPAC name for this molecule would need to indicate that the functional groups it contained included:

- (a) a double bond and an aldehyde group.
- (b) an alkyl group and an alcohol group.
- (c) an alkyl group and a carboxyl group.
- (d) a double bond and a carboxyl group.

2. From the list of 5 names below, pick the combination that are isomers of each other.

butanoic acid

II butan-2-ol III ethyl ethanoate

IV butanal V butanone

- I and II (a)
- (b) II and III
- III and IV (c)
- (d) IV and V
- 3. Three important types of chemical reaction are:

I Condensation polymerisation

II Addition polymerisation

III Esterification

The equation for the production of terylene is:

This reaction could be classified as a type:

- I reaction only. (a)
- II reaction only. (b)
- I and III reaction. (c)
- II and III reaction. (d)

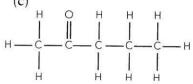
- Which of the following lists contains empirical formulae only. 4.
 - C_2H_6 (a) ΗŌ
- CuSO₄
- Mn,O,

- (b)
- C,H,O
- N,H,SO,

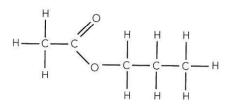
- (c) OF, Pt,N,H,Cl, (d)
- AgN,H
- C_6H_6 CaO,H,

Use the structural formulae drawn below to answer questions 5 to 7.

- The substances which are polar but do not exhibit hydrogen bonding are: 5.
 - IV & VI
 - (b) I, IV, V & VI
 - IV & V (c)
 - V & VI (d)
- The substance that would react with acidified KMnO₄ to form an isomer of VI is: 6.
 - (a)
 - Π (b)
 - III (c)
 - (d) IV
- The two substances that could be used to produce a third from the list are: 7.
 - III & VI (a)
 - II & IV (b)
 - III & IV (c)
 - V & VI (d)
- A compound containing only C, H and O was found to be composed of 77.38% oxygen 8. and 19.36% carbon.
 - The compound would be carboxylic acid as it contains carbon, oxygen and a (a) very small amount of hydrogen.
 - To determine the molecular formula of the compound, it would be necessary (b) to vaporise a known mass of the compound to determine the percentage of hydrogen present.
 - The compound would be a carboxylic acid or an ester, more information would (c) be needed to determine which.
 - The compound has an empirical formula O₃CH₂. (d)
- Consider the molecule shown. 9.


This molecule would be best identified as:


- a carboxylic acid (a)
- a primary amine (b)
- an α-amino acid (c)
- an amino aldehyde (d)


- Which of the following compounds would you expect to be most soluble in water? 10.
 - propane
 - (b) propanal
 - (c) propanone
 - (d) propan-1-ol

SECTION 2 – SHORT AND EXTENDED ANSWER (60 MARKS)

Use IUPAC rules to name the following compounds. 11.

[12 marks]

- Draw the structural formula for each of the following compounds. 12.
 - 1,2-dichloroethane (a)
- (b) trans-but-2-ene
- (c) cis-2,3-diiodopent-2-ene
- (d) pentan-1-amine (or pentanamine)
- 3,4-dimethylheptanal (e)
- propyl butanoate (f)

13.	Write	Write the balanced equation for each of the following reactions:		
	(a)	propene + chlorine gas		
	(b) butane + excess oxygen gas			
	(c)	ethane + bromine (in presence of suitable catalyst)		
		[6 marks]		
14.	4. Use half equations to write balanced equations for the following reactions an the organic product produced.			
	(a) Acidified potassium dichromate and propanal			
	OXIDATION:			
	REDU	UCTION:		
	REDOX:			
	NAM	IE:		
	(b) Acidified potassium permanganate and butan-2-ol OXIDATION:			
	RED	UCTION:		
	RED	OX:		
	NAM	ME:		
		[8 marks]		
15.	Drav	v the structural formula and name the organic product of the following reactions:		
	(a)	ethanol + propanoic acid (b) heptan-1-ol + butanoic acid (with concentrated H_2SO_4 as catalyst) (with concentrated H_2SO_4 as catalyst)		

- 16. Draw a section of the polymer chain formed when the following monomers are polymerised. You need to draw at least 4 monomer units in your polymer.
 - (a) H C = C H
 - (b) C C C N H

[4 marks]

17. The general formula of an a-amino acid can be written as:

$$H_2N$$
 C C OH

Write the formula to show the ions formed when:

- (a) It is dissolved in an acidic solution
- (b) It is dissolved in a basic solution

[4 marks]

18. A 0.467 g sample of nicotine was burnt in excess oxygen to produce 1.266 g of carbon dioxide and 0.3589 g of water vapour.

A second sample of the nicotine, weighing $0.362~\mathrm{g}$ was analysed and found to contain $0.06263~\mathrm{g}$ of nitrogen.

A third sample of the nicotine, weighing 0.964 g was vaporised in a 0.0500 L container and found to exert a pressure of 544 kPa at a temperature of 277°C.

Determine the empirical and molecular formulae of the nicotine.

<u> </u>

[10 marks]

END OF TEST – TOTAL 80 MARKS